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The Restriction of the Ising Model to a Layer
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We discuss the status of recent Gibbsian descriptions of the restriction (projec-
tion) of the Ising phases to a layer. We concentrate on the projection of the two-
dimensional low-temperature Ising phases, for which we prove a variational
principle.
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1. INTRODUCTION

In this paper we study the restriction of the two-dimensional Ising model
to a (one-dimensional) layer..The restriction of the plus (or minus) phase
is known to be non-Gibbsian below the critical temperature, see refs. 36
and 10. Following suggestions of Dobrushin it was recently shown that this
restriction is in fact weakly Gibbsian, see refs. 5, 6, 35, and 31. We state
and discuss various recent results on these restrictions. Using elementary
methods, we rederive results on weak Gibbsianness below the critical tem-
perature and the results on Gibbsianness above the critical temperature or
in a magnetic field. We also add the result that further random decimations
of the weakly Gibbsian restriction are again Gibbsian. Finally, we prove
the existence of thermodynamic functions (energy and free energy density)
and we discuss a variational principle for the weakly Gibbsian measure.

The study of restrictions of Gibbs measures (on d+1-dimensional
configurations) to a sublayer (of dimension d ) can be motivated in various
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ways. First of all they are interesting test cases for an extended Gibbsian
description of non-Gibbsian states. Since about ten years various examples
of non-Gibbsian states have been produced. Some of these go back to the
work of Griffiths, Pearce and Israel, (17, 20) and have become (in)famous as
so called renormalization group pathologies.(8) Dobrushin's program tries
to understand the non-Gibbsianness as coming from a perhaps too strict
requirement on the potential. If, like is the case for unbounded spins, one
asks for a potential which is summable on what are typical configurations
for the state, one can get at least some effective interaction or physically
relevant parametrization of e.g., the images under transformations of states.

A second motivation comes from the theory of interacting particle
systems. One of the questions is to see under what conditions the invariant
measures of a dynamics are Gibbsian. The simplest scenario is found for
so-called probabilistic cellular automata (PCA). These are stochastic
dynamics for lattice spin systems under which the spins are updated syn-
chronously in discrete time. If one starts a PCA (with positive transition
probabilities) from an invariant measure, then the distribution of space-
time configurations (configurations on the space-time lattice) turns out to
be a Gibbs measure see ref. 25. Therefore, the invariant measure itself is a
restriction of a d+1-dimensional Gibbs measure to a d-dimensional hyper-
surface.

In fact, the question in ref. 36 about the Ising restrictions came quite
naturally after it was found in ref. 25 that for high noise dynamics the
unique stationary state is Gibbsian as follows from considering the restric-
tion of a Gibbs state in the regime of complete analyticity. The question
about the Gibbsian nature of stationary states has of course been con-
sidered before, see e.g., refs. 23, 22, 33, 34 and references therein. Under-
standing the locality of the time reversal operation with respect to the
stationary state plays a crucial role in these. While most of these problems
are still open (for general PCA's), we feel that the Dobrushin program
gives new inspiration towards a (weakly) Gibbsian description of these
invariant measures if considered as restrictions of Gibbs measures.

A third motivation can be found in the study of surfaces and models
on half-planes with random boundary conditions (wetting phenomena).
The restriction of the two dimensional Ising model to a layer can of course
be seen as a surface state with respect to the two dimensional Ising
measure. The problem of finding an interaction for this restriction consists
in finding the interacting between spins at the boundary of an Ising sample
(as a function of the configuration at this boundary). The relation with
wetting is of a more technical nature. It turns out that in the study of the
restriction of Ising measures, one is quickly confronted with questions like
how far the influence of a configuration on a sublayer is felt in the bulk of
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the system. The wetting-context can be used to get a very useful intuitive
picture of why, at low temperatures, the restrictions of the plus phase of the
Ising model are not Gibbsian. This was made precise in ref. 8, see also
ref. 10. An interesting further question (related to the convergence proper-
ties of the potential for the restriction) is to see whether there is good decay
of correlations close to the surface when on this surface we impose a ``typi-
cal surface-configuration'' (i.e., a sample of the restriction). We will answer
this question in Section 4 (Proposition 4.1).

The paper is organized as follows: in Section 2 we introduce basic
notations and definitions. We introduce the ``telescoping'' potential (a� la
Kozlov, (21)) in Section 3 and discuss its summability properties. In Sec-
tion 4 we give an overview of the results on the restrictions of the Ising
model. In Section 5 we prove the results of Section 4 using the telescoping
potential, and finally in Section 6 we discuss the variational principle.

2. DEFINITIONS AND NOTATIONS

2.1. Configuration Space

We consider the regular r-dimensional lattice Zr and denote by
L :=[V, |V |<�] the set of finite subsets of Zr. The complement of a set
V/Zr is V c=Zr"V. For two sites x, y # Zr we define

|x& y| := :
r

i=1

|xi& yi | (2.1)

The state space is 0 :=[+1, &1]Zr
and its elements (=configura-

tions) are denoted by greek letters ', |, _, !,... . The value of | at a site
i # Zr is written as |(i). For V # L, _ # 0 we define

_V (x)={_(x)
+1

if x # V
if x � V

(2.2)

For _, ' # 0 we define _V'Vc to be the configuration

_V 'Vc(x)={_(x)
'(x)

x # V
x � V

(2.3)

The restriction of 0 to a volume V/Zr is denoted by 0V :=[+1, &1]V

and we write _V # 0V for the restriction of a configuration _.
On 0 we have the natural action of translations {a , a # Zr defined by

{a'(i) :='(i&a), i # Zr. The _-algebra generated by the evaluation maps
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Xi , Xi (|) :=|(i), i # M is written as FM=_[Xi , i # M ]. When M=Zr, we
set F :=FZr . The tail field _-algebra T� is defined as

T� := ,
V # L

FVc (2.4)

The configuration space 0 is a compact metric space in the product topol-
ogy. A function f on 0 is called local if it depends only on a finite number
of coordinates, i.e., there is a V # L such that f (')= f (`) whenever 'V=`V .
The minimal set V such that this holds is called the dependence set of the
function.

Definition 2.1. A function f : 0 � R is called right-continuous in
_ # 0 if

f (_)= lim
V A Zr

f (_V) (2.5)

On 0 we have the pointwise order 'P| if '(x)�|(x) \x # Zr.
A function f : 0 � R is called monotone non-decreasing if for all ', ! # 0,
'P! implies f (')� f (!).

2.2. Potentials and Specifications

Definition 2.2 (cf. ref. 10). A local specification 1 on L is a family
of probability kernels 1=[#V , V # L] on (0, F), such that the following
hold:

1. #V ( } | |) is a probability measure on (0, F) for all | # 0;

2. #V (F | } ) is FV c-measurable for all F # F;

3. #V (F | |)=1F (|) if F # FVc ;

4. #V2
#V1

=#V2
if V1/V2 .

Definition 2.3. A probability measure + is consistent with a
specification 1 (or vice versa), notation + # G(1 ), if \V # L

+#V=+ (2.6)

A specification 1 is said to be translation invariant if \a # Zr, \V # L,
\| # 0 and for all bounded measurable functions f

#V ( f b {a | |)=#V+a( f | {a|) (2.7)
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where we abbreviate #V ( f | |)=�_V
f (_V |Vc) #V (_V | |Vc). We slightly

abuse the notation (and circumvent property 3 above) by writing #V (_ | |)
=#V (_V | |V c)=#V (_V | |V c) if one means to take configurations _ and |
identical on V c. One should think of #V (_ | |), as the probability to find
_ in V given | outside of V.

Property 4 of Definition (2.2) is called self-consistency and is most
important in characterising equilibrium. It suggests constructing probabil-
ity measures & # G(1 ) as weak limits of #V ( } | |), some | # 0, V A Zr

(perhaps along a subsequence). Such weak limits automatically exist by
compactness but their consistency with the specification is only immediate
if #V ( f | } ) is a continuous function for all continuous f. One then deals
with a so-called Feller (or quasilocal) specification. This is not the context
of the Dobrushin program where more general specifications have to be
considered and hence that G(1 ){< is not obvious in general.

In a Gibbsian formalism one considers a special class of specifications,
the so called Gibbsian specifications which are of the Boltzmann�Gibbs
form:

#V (_ | |)=
1

ZV (|)
exp {& :

A & V{<

U(A, _V |V c)= (2.8)

where ZV ( } ) # FVc is a normalization factor

ZV (|)= :
_V # 0V

exp {& :
A & V{<

U(A, _V |V c)= (2.9)

and U(A, } ) is an ``interaction potential:''

Definition 2.4. A potential U is a real-valued function on L_0

U: L_0 � R (2.10)

such that U(A, } ) # FA for all A # L (put U(<, } )=0).
A potential U is translation invariant if \A # L, a # ZrS, ' # 0

U(A, ')=U(A+a, {a') (2.11)

Definition 2.5. 1. A potential U is convergent at | # 0 if for all
V # L

:
A & V{<

U(A, |) (2.12)
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is well-defined. We always understand an infinite sum �A aA as well-
defined when _a<� with the property that \=>0 _V0 # L so that
\V # L, V#V0

} :
A/V

aA&a }�=

2. A potential U is absolutely convergent at | # 0 if for all V # L

:
A & V{<

|U(A, |)|<� (2.13)

3. A potential U is uniformly absolutely convergent if for all V # L

:
A & V{<

sup
| # 0

|U(A, |)|<� (2.14)

Let U be a potential and suppose that there exists a set 0� U in the tail
field of points of convergence of U (0� U # T� and \| # 0� U and \V # L the
sum �A & V{< U(A, |) is well-defined). Then, for every V # L and every
| # 0� U we can introduce the finite volume Gibbs measure

+|, U
V (!)={

1
ZV (|)

exp {& :
A & V{<

U(A, !V |V c)= if !=!V |V c

0 otherwise

(2.15)

(We ask for 0� U to be in the tail field to make sure that ZV (|) is well-
defined.) Factors of temperature or a priori weights (reference measure) are
supposed to be contained in the potential. The Dobrushin operator is then
defined by taking expectations with respect to (2.15):

RU
V ( f )(|) :=| f (!) +|, U

V (d!) (2.16)

mapping bounded measurable functions f on 0 to functions RU
V ( f ) on 0� U .

Definition 2.6. A probability measure + on (0, F) is weakly
Gibbsian if there exists a potential U and a tail field set 0U of points of
absolute convergence of U (cf. (2.13)) such that

1. +(0U)=1;
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2. \V # L and for every bounded measurable function f,

|
0

f d+=|
0

RU
V ( f ) d+ (2.17)

A somewhat less stringent definition of weak Gibbsianness is obtained
by asking that there is a tail field set 0� U of points of convergence of U such
that 1 and 2 of Definition 2.6 hold.

If the potential in Definition (2.6) is uniformly absolutely convergent,
then & is a (bona fide) Gibbs measure.

3. VACUUM AND TELESCOPING POTENTIAL

In this section we shall introduce the so-called telescoping potential
which will be a very useful tool in the study of the restrictions of the Ising
model. A natural potential associated to a specification is the so-called
vacuum potential (in our case the vacuum will always be the configuration
of all plusses). To construct this potential, start from

HV (!) :=ln
#V (+ | +)
#V (!V | +)

(3.1)

and write

HV (!)= :
A/V

v(A, !) (3.2)

This last formula can be inverted (Mo% bius formula) and we get:

v(A, !)= :
V/A

(&1) |A"V | HV (!) (3.3)

The inversion is rapidly checked by remembering that �V/R/B (&1) |R| =
(&1) |V | $B, V where $ is the Kronecker delta. This potential v is called
vacuum because it has the property that v(A, |)=0 whenever |i=+1 for
some i # A. This follows easily from (3.3) using that HV (!)=HV"i (!) if
i # V/A and !(i)=+. It is straightforward to check that the vacuum
potential is the unique potential having this property and that it is transla-
tion invariant if 1 is. In ref. 31 it is proved that the vacuum potential v is
convergent and consistent with the specification 1, i.e., \V # L \|, ! # 0

#V (! | |)=
1

ZV (|)
exp _& :

A & v{<

v(A, !V |Vc)& (3.4)

if and only if the specification is right-continuous.
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A possible problem with this vacuum potential is that it may not be
absolutely convergent (even when the specification is right-continuous).
Therefore, in order to obtain absolute convergence Kozlov, in ref. 21, intro-
duces another kind of potential. We now present a simplified version of it
which, for the occasion, we would like to call a telescoping potential. For
this we turn again to (3.1) and we write

exp(&HV (!))=
#V (!V | +)
#V (+ | +)

= `
n

s=1

exp Fs(!i1
} } } ! is

) (3.5)

where we have lexicographically ordered the n=|V | sites in V according to
i1<i2< } } } <in and

Fs(!i1
} } } ! is

) :=ln
#V (!i1

} } } ! is
+ } } } + | +)

#V (!i1
} } } !is&1

+ } } } + | +)
(3.6)

We can now order the sites i1 ,..., is=[ j�i, j # V ] according to their dis-
tance from the ``largest'' site is=i. For this purpose we consider for every
i # V the sequence of increasing volumes Li, m with

Li, m :=[ j # Zr : j�i, | j&i |�m], m=0, 1,... (3.7)

We thus have the partition

[ j�i, j # V ]= .
m(i, V )

m=1

[V i, m"V i, m&1] _ Vi, 0 (3.8)

with Vi, m :=Li, m & V and m(i, V )#maxj�i, j # V |i& j |. Correspondingly,
Fs(!i1

} } } ! is
)=Fs(!Vi , m(i , V )) can be further telescoped as

=& :
m(i, V )

m=0

ULi , m
(!V) (3.9)

with

ULi , m
(!) :=ln

#Li , m
(!Li , m&1 | +) #Li , m

(!Li , m"i | +)

#Li , m
(!Li , m&1"i | +) #Li , m

(!Li , m | +)
(3.10)

for m>0 and

ULi , 0
(!) :=&Fi (!Li , 0)=ln

#i (+ | +)
#i (!i | +)

(3.11)
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(Observe that m(i, V )=0 when i=i1 is the ``first'' site in V ). We thus
define the (telescoping) potential

U(A, !) :=ULi , m
(!) see (3.10), if A=Li, m for some i # Zr, m�0 (3.12)

and U(A, !)#0 otherwise.
To get more insight in the potential it is instructive to rewrite it for the

one-dimensional case. For r=1 the potential U(B, !) is non-vanishing iff
B=Li, m=[i&m, i] & Z, i # Z, m=0, 1,... is an interval. For such a B we
rewrite (3.10) as

U[ j, i](!)=ln
#[ j, i](!] j, i] | +) #[ j, i](![ j, i[ | +)

#[ j, i](!] j, i[ | +) #[ j, i](![ j, i] | +)
(3.13)

where we abbreviated e.g., ] j, i]#[ j+1,..., i ] for j<i in Z.
Some properties of this potential are immediate. For example,

ULi , m
=0 whenever !i=+ or when !=+ on the set Li, m "Li, m&1 . As a

consequence and following (3.5)�(3.11), the Hamiltonian (3.1) is telescoped
as

HV (!)= :
A & V{<

U(A, !V) (3.14)

Moreover, the potential is explicitly translation-invariant if the specifica-
tion is.

From now on we will assume that the specification 1 is right-continuous.
In the sequel this specification will always be the monotone right-con-
tinuous specification (introduced in ref. 10) consistent with the restriction
of the Ising model.

In order to verify the consistency of this telescoping potential with the
right-continuous specification, we can rewrite U as a resummation of the
vacuum potential (see also ref. 21). More precisely

ULi , m
(!)= :

R % i, R/3 Li , m&1 , R/Li , m

v(R, !) (3.15)

for m>0, and for m=0 we have Ui (!)=v(i, !).
From this, one can check that \V # L

:
A & V{<

U(A, !V)= :
A & V{<

v(A, !V) (3.16)

if for every V # L, U is absolutely convergent in !V (see ref. 21). If there
exists a set 0U in the tail field such that U is absolutely convergent in every
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point | of 0U then (3.16) together with the right-continuity of 1 and the
consistency of v with 1 (see 3.4) give that

#V (! | |)=
1

ZV (|)
exp _& :

A & V{<

U(A, !V |V c)& , | # 0U (3.17)

The representation (3.15) of the telescoping potential in terms of the
vacuum potential is very useful, because one has a certain freedom in the
choice of the sets Li, m . The only constraint on these sets is that the
obtained potential (from (3.15)) is still consistent with the specification, i.e.,

\R # L _!(i, m) such that R % i, R/3 Li, m&1 , R/Li, m (3.18)

Indeed, when the constraint (3.18) is satisfied we have

:
A & V{<

U(A, !V)= :
Li , m & V{<

:
R % i, R/3 Li , m&1 , R/Li , m

v(R, !V)

= :
A & V{<

v(A, !V) (3.19)

and from this, together with the right-continuity of the specification, we
conclude that the potential U is consistent with the specification. The con-
straint (3.18) on the sets Li, m is of a geometric nature. In dimension r=1
we can choose e.g., Li, m=[i& g(m), i], where g(m) is some strictly increas-
ing function. The freedom in the choice of g(m) permits to ``tune'' a bit the
convergence properties of the potential U (for our study of the restrictions
it will be okay to choose g(m)=m). In r�2 the sets Li, m introduced before
also satisfy this constraint, whereas e.g., Li, m :=[ j # Zr : | j&i |�m] do not
satisfy the constraint.

In applications, the right-continuous specification 1 is often constructed
starting from a probability measure & such that & # G(1 ) (cf. Defini-
tion 2.3). We then know that & is weakly Gibbsian (cf. Definition 2.6) if
there exists a tail field set 0U of points of absolute convergence of U such
that &(0U)=1. I.e., proving that & is weakly Gibbsian boils down to
showing that

:
j�i

:
m�|i& j |

|U(Lj, m , !)|<�, i # Zr (3.20)

for a full-measure (tail-)set of ! 's.
The sum (3.20) can only converge if for every j # Zd U(Lj, m , !) decays

fast enough as m � �. The typical situation which we meet in the case of
projections is that U(Lj, m , !) decays in fact exponentially in m, for m larger
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than some function l( j, !). The absolute convergence of such a potential is
the context of the following proposition.

Proposition 3.1. Let 1 be a local right-continuous specification,
& # G(1 ) and U the telescoping potential defined by (3.10) and (3.11).
Suppose that there exist constants C1 , C2 , M<�, *>0 and a function
l: Z_0 � R+ _ [+�] such that \m�M, \! # 0 \j # Z

|U(Lj, m , !)|�C1I[m�l( j, !)]+C2I[m>l( j, !)] exp[&*m] (3.21)

Suppose further that _ a translation invariant tail field set K, &(K )=1 so
that \! # K \j # Z, l( j, !)<� and

|[ j�i : l( j, !)�| j&i |]|<�, i # Z (3.22)

Then the telescoping potential U is absolutely convergent for ! # K and &
is weakly Gibbsian.

Of course, the left hand side of (3.21) is a local function for fixed m
while the right hand side can be highly non-local as a function of ! and
deals with the dependence of the potential on ! as m grows.

Remark 1. Conditions (3.21) and (3.22) may seem weird or ad hoc.
In Section 5 we show that they are satisfied for the one-dimensional restric-
tion of the plus-phase of the two-dimensional Ising model. In fact if & is the
restriction to a hyperplane of a measure + then ULj, m

(!) measures the
correlations between spins at sites ( j, 1) and (k, 1), k # Lj, m"Lj, m&1 in a
measure +!Lj, m where +!Lj, m is a constrained measure obtained from + and
! plays the role of a boundary condition. (This will become more clear in
Section 4).

One should think of the l( j, !) as the radius of a ball around site j
outside which the spins at sites (k, 1), k� j are only weakly correlated to
the spin at site ( j, 1) in the constrained measure +!

; of (4.7).
To satisfy (3.22) on a set of full measure for & it suffices that

&[l( j, !)>u]�exp[&cu] for some c>0.

Remark 2. For r=1, it is convenient to use the left�right symmetry
of the sets Lj, m which are just lattice intervals [i, j]. We then ask (3.21)
(which looks to the left) together with the existence of finite l+(i, !) for
which

|U([i, j], !)|�C1I[ j&i�l+(i, !)]+C2 I[ j&i>l+(i, !)]

_exp[&* | j&i |] (3.23)

79The Restriction of the Ising Model to a Layer



(looking to the right). The assumption (3.22) in Proposition 3.1 can be
replaced by the requirement that for each i # Z, ! # K, there are finite
l+(i, !), l&(i, !)#l(i, !)<� so that for all j>i # Z, (3.21) and (3.23)
hold. The idea is that l&(i, !) looks in the configuration ! to the left of i
while l+(i, !) looks to the right.

Proof of Proposition 3.1. We have to check (3.20). Inserting (3.21)
there are two sums to control. The sum for m>l( j, !) is easily taken care
of using the exponential decay. The sum over m�l( j, !) has only a con-
tribution if | j&i |�l( j, !). We thus get that (3.20) is bounded by

C1 :
j�i, | j&i |�l( j, !)

l( j, !)r+C3 :
j�i

exp[&* | j&i |] (3.24)

Using assumption (3.22) this is finite and the conclusion follows from the
remarks above. K

4. THE RESTRICTED ISING MODEL

4.1. The Model

We consider the standard ferromagnetic nearest neighbor Ising model
on the regular d+1-dimensional lattice Zd+1, d�1. The symbols 4, 4n ,...
will be reserved to indicate finite subsets of Zd+1. Their complement is
4c=Zd+1"4 etc. The configuration space for the Ising model is 0$=
[+1, &1]Zd+1

. Fix ;�0, h>0. For a finite box 4/Zd+1 with free (or
empty) boundary conditions, the Gibbs state +h

4, ; for the Ising model
assigns a probability

+h
4, ;(_x , x # 4)=

1
Zh

4, ;

exp _; :
(xy) /4

(_x _y&1)+h :
x # 4

_x& (4.1)

to an Ising spin configuration _x=\1, x # 4. The normalization Zh
4, ; is

the partition function (for free boundary conditions). The parameter ; is
(proportional to) the inverse temperature and h is called the magnetic field.
The first sum in (4.1) is over the nearest neighbor pairs (xy) in 4. Each
site x # Zd+1 has 2(d+1) nearest neighbors and we write ytx if the site
y # Zd+1 is a nearest neighbor of x. The infinite volume Ising state +h

;=
lim4 +h

4, ; is obtained in the thermodynamic limit as 4 A Zd+1 along a
sequence of sufficiently regular volumes. We can take the (weak) limit h a 0
of +h

4, ; and we write ++
; =+0+

; for this limit. In the same way, starting with
h<0 and letting h A 0 we can define +&

; . We refer to all of these as Ising
states. When making no distinction between them, we denote these states
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by the common symbol +; and the corresponding random field is denoted
X=(X(x), x # Zd+1). They are translation invariant probability measures
on (0$, FZd+1) and they all satisfy the Dobrushin�Lanford�Ruelle equation

+;[X(x)=_x | X( y), y # Zd+1"[x]](_)=
1

1+exp(&2;_x �ytx _y&2h_x)

(4.2)

+; almost surely. For h=0 and for sufficiently large ; there are other solu-
tions to (4.2) (even non-translation invariant ones if d�2) but we will
restrict us in what follows to the Ising states introduced above. In par-
ticular, there is a critical value 0<;c<� for which ++

; {+&
; whenever

;>;c . The standard methods, results and more details about the Ising
model can be found in almost any textbook on statistical mechanics, see
e.g., refs. 38, 12 or 37.

We now fix a hyperplane or layer

5=[x=(x1 ,..., xd , xd+1) # Zd+1: xd+1=0] (4.3)

which we can identify with Zd. The sites in 5 are denoted by i, j, k,...,
which, though treated as elements of Zd, ought to be identified with
(i, 0), ( j, 0), (k, 0),... when considering 5/Zd+1. Finite subsets of 5 are
written as V, Vn , A... and by V c we mean the complement of V in 5.
On 5 we have a new configuration space 0=[+1, 1]Zd

with elements
!, `, |,... and we write F=F5 . Of course, every _ # 0$ gives rise to a
unique !=!(_) # 0 via !i=_(i, 0) , i # Zd and much of the structure and
notation of the spin system on 5 is inherited quite straighforwardly from
that on Zd+1. For example, given ! # 0, we put !V=!(_4)=(!(_))V for
4 & 5=V and _(i, 0)=!i . We also write `V !Vc for the configuration which
is equal to ` on V and is equal to ! on V c when given !, ` # 0.

This paper is about the restriction of the Ising states +h
; and +\

; to this
layer 5. In other words, with (X(x), x # Zd) the random field corresponding
to the considered d+1-dimensional Ising state, we want to study the
d-dimensional random field Y with

Y(i)=X((i, 0)), i # Zd (4.4)

Obviously, the distribution of Y is the one induced from that of X. Writing
&h

; and &\
; (or, &; in general) for this induced law from, respectively, the +h

;

and +\
; we have for example

| f (!) d&+
; (!)#&+

; ( f )=++
; ( f )#| f (_) d++

; (_) (4.5)
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for the expectation of any function f which is F-measurable (depends only
on the _(i, 0) , i # Zd). In particular, for ;>;c we have &+

; (Y(0))=
++

; (X(0))#m*(;)>0 (the spontaneous magnetization). Similarly, the
truncated correlations (or covariances) within the layer 5

&;( f; g)#&;( fg)&&;( f ) &;(g)=+;( f; g)#+;( fg)&+;( f ) +;(g) (4.6)

between any two functions f and g depending on a finite number of coor-
dinates in !, decay exponentially fast in the distance between the
dependence sets of f and g, whenever this is the case in the considered
d+1-dimensional Ising state +; (which is verified away from the critical
point ;=;c).

The problem can therefore not be to evaluate the expectation value of
specific observables in our restricted state because this can be done starting
from the well-known Ising states. Rather, we are interested in some global
characterizations of the restricted states &; . More specifically, we wish to
understand the &; as Gibbs measures for some interaction.

In the study of the convergence properties of this interaction potential
it will turn out to be useful to know whether for the original Ising measure
+; there is good decay of correlations close to the surface when on the sur-
face we impose a typical configuration drawn from &; . This is the context
of the following proposition. For +; the Ising measure on [&1, 1]Zd+1

,
define

+!
;( } ) :=+;( } | F)(!) (4.7)

This is defined for &; almost every surface configuration ! # 0. In the sequel
we will always work with the right-continuous version of this conditional
probabilities (see ref. 10, cf. infra).

One has the following result

Proposition 4.1. Suppose that there are constants C<�, m>0
such that for all x # Zd+1, +;(X(0); X(x))�C exp(&2m |x| ). Then there is
a set K0/0 with &;(K0)=1 such that for all ! # K0 there is a length l=
l(0, !)<� for which

|+!
;(X(0, 1); X(i, 1))|�Ce&m |i | (4.8)

whenever |i |>l.

Proof. The crucial step is to observe that (by definition) &;(+!
;)=+; .

Moreover, by the FKG-inequality (positive correlations), &;[+!
;(X(0))

+!
;(X(x))]�&;[+!

;(X(0))] &;[+!
;(X(x))]=+'(X(0)) +;(X(x)) since +!

;(X(x))
is a bounded measurable function non-decreasing in !. The constrained
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measure +!
; is itself an FKG-measure so that &;( |+!

;(X(0, 1); X(i, 1))| )=
&;[+!

;(X(0, 1); X(i, 1))]�+;(X(0, 1); X(i, 1))�C exp(&2m |i | ). The con-
clusion (4.8) now follows from standard Borel�Cantelli arguments. K

We feel that the left hand side of (4.8) is monotone non-increasing in
! when we put more plusses) at least when h�0 and ! has positive average
magnetization. Proving that l(!) is decreasing in ! # K0 seems to ask
however for a rather non-trivial extension of a GHS-type inequality. (13)

4.2. Results on Gibbsian Characterizations

As announced in Section 1, we restrict ourselves to results concerning
Gibbsian descriptions of restrictions to a layer of Ising states. We first give
a summary of results describing the state of the art before Dobrushin's
1995 talk.(5) We then present the results of the Dobrushin program for
these restrictions of the Ising model.

The beginning of the study of Ising restrictions was

Theorem 4.1 (Schonmann(36)). In d=1 and for ;>;c there is no
translation invariant uniformly absolutely convergent potential for &+

; .

In the following, a further decimation &+, b
; , b=3, 4,... of this &+

; was
considered. This measure is obtained as the restriction of the two-dimen-
sional ++

; to [0]_bZ or, alternatively, as the restriction of &+
; to the

decimated integers bZ.

Theorem 4.2 (Lo� rinczi, Vande Velde(30)). For sufficiently large ;,
for all b=3, 4,..., &+, b

; is a (bona-fide) Gibbs measure.

Decimation of non-Gibbsian measures can thus be (bona fide)
Gibbsian measures (and the opposite is also true). We can extend this
result to random decimations. In other words, we assign a Bernoulli
variable ni=0, 1 to each site i # Z. The ni are independent and identically
distributed with density p. We consider the restriction &+, (ni)

; of ++
; (or &+

; )
to the (random) set [i # Z : ni=1] of occupied sites.

Theorem 4.3. There is po>0 so that for sufficiently large ;, for all
p<po , &+, (ni)

; is a (bona-fide) Gibbs measure for almost all (ni).

One can ask what happens when the temperature is large or when the
magnetic field is non-zero. While it is rather easy to show that for suf-
ficiently small ;>0 or for sufficiently large h, the Ising restrictions &h

; are
Gibbsian, it is less trivial to show the following
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Theorem 4.4 (Lo� rinczi(26)). For d=1, the Ising restriction &h
; is

Gibbsian whenever h{0.

Theorem 4.1 was given a more intuitive proof in ref. 8. In fact, some-
thing more was obtained (so called absence of quasi-locality).

Theorem 4.5 (van Enter, Fernandez, Sokal(8)). Take ; sufficiently
large and d=1. Then there does not exist a continuous local specification
1 such that &+

; # G(1 ), i.e., &+
; is not a (bona fide) Gibbs measure.

This was extended to any dimension by

Theorem 4.6 (Fernandez, Pfister(10)). Take any dimension d and
take ;>;c . Then there does not exist a continuous local specification 1
with &+

; # G(1 ). I.e., &+
; is not a (bona fide) Gibbs measure.

On the positive side, from ref. 10 it also follows that there exists (for
all ;, h) an everywhere right-continuous local specification 1=1 h

; so that
&h

; # G(1 ). We observed via (3.4) (see also ref. 31) that this implies that the
corresponding vacuum potential is always convergent (on 0)). As we have
shown again around (3.4), this implies that &h

; (including h=0+) is weakly
Gibbsian for the (everywhere) convergent vacuum potential. The question
about the absolute convergence of the vacuum potential (on a set of
measure one) was also solved:

Theorem 4.7 (Dobrushin, Shlosman(6)). For d=1 and ; suf-
ficiently large, &+

; is weakly Gibbsian for the absolutely convergent vacuum
potential.

For the telescoping potential we have the following

Theorem 4.8 (Maes, Vande Velde(35)). For d=1 and ; sufficiently
large, &+

; is weakly Gibbsian for the absolutely convergent telescoping
potential.

The next Section will start with a more detailed presentation (and
proof ) of this last Theorem.

5. PROOFS

We use here the telescoping potential constructed in Section 3 to
prove the results of Section 4. The main thing to show is the exponential
decay of this potential for large sets which will follow from the fact that
it can be expressed as a correlation function in a two dimensional Ising
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model on a halfplane with a ``typical'' surface configuration. The specifica-
tion 1 used in this section will always be the monotone right-continuous
specification consistent with the restriction of the plus phase of the two
dimensional Ising model to the line [(i, 0) : i # Z]. The telescoping poten-
tial introduced in Section 3 is here for j{k

U([ j, k], !)=&ln
#[ j, k](![ j, k] | +) #[ j, k](!] j, k[ | +)

#[ j, k](!] j, k] | +) #[ j, k](![ j, k[ | +)
(5.1)

Using that 1 is a specification consistent with the restriction of the plus
phase of the two-dimensional Ising model, we have

&U([ j, k], !)=
1
2

(1&!j)(1&!k) ln
++, ![ j, k]

; [e2;X( j, 1)e2;X(k, 1)]

++, ![ j, k]

; [e2;X( j, 1)] ++, ![ j, k]

; [e2;X(k, 1)]

+;(1&!j)(1&!j+1) $j, k&1 (5.2)

where ++, ![ j, k]

; is the constrained measure of (4.7). More specifically, con-
sider the events Sn(![ j, k])#[X(x)=+1, x # 4c

n ; X(x)=!i , x=(i, 0),
i # [ j, k]; X(x)=+1, x=(i, 0), i � [ j, k]] where 4n is an increasing
sequence of squares centered around the origin. For a continuous function
f on 0$,

++, ![ j, k]

; [ f ]#lim
n

++
; [ f | Sn(![ j, k])]=lim

n
++, ![ j, k]

n, ; ( f ) (5.3)

This, of course, is a function of the !i , i # [ j, k] only, which act as extra
boundary conditions. The limit (5.3) is over the finite volume Ising
measures ++, ![ j, k]

n, ; with plus boundary conditions outside the square 4n and
![ j, k] boundary conditions in the middle of the square (on 5 & 4n , cutting
the square in two equal parts). For j=k, we have U([ j, k], !)=

U( j, !)=(1&!j) ln ++, ! j

; [e2;X( j, 1)]+;(1&! j) (5.4)

The extra term for j=k&1 and j=k in (5.2) and (5.4) comes from the
interaction inside the layer 5 (tZ) and corresponds to the one-dimensional
Ising model. One can check that, max! |UA(!)|�10; uniformly in A.

Let 0U=�i # Z 0 i
U be defined via

0 i
U={| # [+, &]Z : _l+

i (|), l&
i (|)<�, \k>l+

i (|), \l>l&
i (|),

1�k :
k

j=0

|(i+ j)>8�9, 1�l :
&1

j=&l

|(i+ j)>8�9= (5.5)
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(This notation suggests of course that 0U coincides with the tail field set
0U of points of absolute convergence of the potential U introduced in Sec-
tion 2. We show that this is indeed the case.)

Clearly, 0U # T� is a translation invariant set in the tail field. It is
easy to see that &+

; (0U)=1 whenever ; is sufficiently large. In fact, under
this condition, for &+

; , the l\
i ( } ), i # Z are exponential random variables.

This follows from the large deviation properties of +; for ;>;c .(36)

In the following proposition we show that the potential U satisfies the
bound (3.21) of Section 3. For the sake of completeness we repeat the proof
of ref. 35.

Proposition 5.1. The potential defined above (see (5.2), (5.4)) is
absolutely convergent for all ! # 0U (see (5.5)). In particular, there are con-
stants C=C;<�, *=*(;)>0 so that for all ! # 0U , k # Z

|U([ j, k], !)|�Ce&* | j&k| (5.6)

whenever | j&k|>l&
k (!). The assumption (3.22) holds or, for all ! # 0U ,

i # Z, there is a constant c;(i, !)<�

:
k�i

:
j�i

|U([ j, k], !)|�16; :
k�i : lk

&(!)>k&i

l&(k, !)+C \ e*

e*&1+
2

�c;(i, !)

(5.7)

Proof. Looking at (5.2), we see that the crux of the matter consists
in proving that uniformly in the size n of the boxes 4n

++, ![0, k]

n, ; [X(0, 1); X(k, 1)]�Ce&*k (5.8)

whenever n>k>l+(0, !). This was done in ref. 35.
We repeat the two main steps. They were inspired by the proof of

some ergodic properties of the plus phase in ref. 4. The first step refor-
mulates the required estimate in terms of a percolation event. Denote by
En(0, k) the event that there is a path of consecutive nearest neighbor sites
x=(i, j) # 4n , j>0, connecting x=(0, 1) with x=(k, 1) on which (X(x),
X$(x)){(+1, +1). Here X and X$ are two independent copies of the
random field with law ++, ![0, k]

n, ; . Then

|++, ![0, k]

n, ; (X(0, 1); X(k, 1))|�2++, ![0, k]

n, ; _++, ![0, k]

n, ; [En(0, k)] (5.9)

For the second step, we use that there is a finite constant C so that

++
n, ;_++

n, ;[En(0, k)]�Ce&2;k (5.10)

86 Maes et al.



for all sufficiently large ;, uniformly in the size n (see ref. 4). The argument
is now completed by noticing that

++, ![0, k]

n, ; _++, ![0, k]

n, ; [En(0, k)]

�exp _4; :
i # [0, k]

(1&!i)& ++
n, ;_++

n, ;[En(0, k)] (5.11)

The conclusion is that

|++, ![0, k]

n, ; (X(0, 1); X(k, 1))|�C$e4; � k
i=0 (1&!i)e&2;k (5.12)

If ! # 0U , only one spin out of eight can be minus in [0, k] for k>l +(0, !)
and hence the right hand side of (5.12) is then smaller than
e4;(1�8) ke&2;k. K

Remark 1. Notice that no use was made of a cluster expansion in
the proof above. In fact, a naive application of this cluster expansion is
quite impossible as it would yield too much; the attempt in ref. 32 failed for
that reason. This is similar to the analysis of Gibbs fields for a random
interaction in the Griffiths' regime, see e.g., refs. 2, 7, and 14. We must only
concentrate on a specific covariance and percolation techniques seem to be
rather powerful in such cases.

Remark 2. An important ingredient in the previous proof is in the
step (5.11). Therefore it seems that the proof is necessarily restricted to one
dimension. This however is not the case. We can prove the decay of the
covariance (as in (5.8)) also in higher dimensions. This we will deal with
in a future publication.

So far we dealt with Theorem 4.8. We now prove other theorems of
Section 4. For the regular decimation we can only prove Theorem 4.2 for
b>4 whereas Lo� rinczi et al. included also b=3, 4.

(a) The case h{0 or T>Tc (;<;c) (Theorem 4.4). In this case we
don't need the steps above. The covariance (the left hand side of (5.12)) is
exponentially small uniformly in the boundary condition. That is,

|++, !
n (X(0, 1) X(k, 1))&++, !

n (X(0, 1)) ++, !
n (X(k, 1))|�C exp[&*k]

(5.13)

This is an immediate application of the result that for h{0 or for ;�;c

the two-dimensional Ising model has a completely analytic interaction.(40)
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Therefore the telescoping potential is actually uniformly absolutely con-
vergent and thus in thsis case the projection is a (bona fide) Gibbs measure.

(b) Regular decimation (Theorem 4.2). In this case we must follow
the above analysis with the only change that (5.2) must be slightly
changed. We now have

&U([ j, k], !)

=
1
4

(1&!j)(1&!k)

_ln
++, b, ![ j, k]

; [e2;[X( j, 1)+X( j, &1)]e2;[X(k, 1)+X(k, &1)]]

++, b, ![ j, k]

; [e2;[X( j, 1)+X( j, &1)]] ++, b, ![ j, k]

; [e2;[X(k, 1)+X(k, &1)]]

(5.14)

where ++, b, ![ j, k]

; is a new constrained measure (very similar to (4.7)). More
specifically, consider the events S b

n(![ j, k])#[X(x)=+1, x # 4c
n ; X(x)=!i ,

x=(i, 0), i # [ j, k] & bZ; X(x)=+1, x=(i, 0), i # [ j, k]c & bZ] where 4n

is an increasing sequence of squares centered around the origin. For a con-
tinuous function f on 0$,

++, b, ![ j, k]

; [ f ]#lim
n

++
; [ f | S b

n(![ j, k])]=lim
n

++, b, ![ j, k]

n, ; ( f ) (5.15)

The final trick of (5.11) cap be repeated but now, since the ! 's live on a
decimated lattice, there are even fewer minusses in the interval [0, k]. It
suffices that |bZ & [0, k]|<k�4 to have an exponential decay of the
appropriately modified covariance (5.8) uniformly in the !, and thus the
decimations are Gibbs for b>4.

(c) Random decimations. The analysis is as in the previous case.
The final trick of (5.11) must now consider

4; :
i # [0, k]

n i (1&! i) (5.16)

Uniformly in ! this is smaller than 8;pk for k large enough on a set of
Bernoulli variables (ni) of full measure. It is therefore sufficient to choose
the density p<1�4. Note that the variables ni do not even need to be inde-
pendent, they can be chosen according to an ergodic measure * with
*(ni)<1�4. K
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6. VARIATIONAL PRINCIPLE

6.1. Existence of Thermodynamic Functions

6.1.1. Energy Density

We start from the telescoping potential U defined in (5.2). In this sec-
tion 1 :=[#V (_ | |) : V/Z] will as always denote the right-continuous
specification such that the restriction of the plus phase of the two dimen-
sional Ising model &+

; # G(1 ). The set 0U/0 will always denote the tail
field set introduced in (5.5) on which the telescoping potential is absolutely
convergent. Given a configuration _ # 0U we define

fU (_) := :
A % 0

1
|A|

UA(_) (6.1)

Given a probability measure + on 0 such that +(0U)=1 and fU # L1(+),
we define

eU
+ :=| fU (_) d+(_) (6.2)

Next we introduce the interaction energy in a finite volume V/Z:

v free boundary conditions:

H f
V (_) := :

A/V

U(A, _) (6.3)

v boundary condition |:

H |
V (_) := :

A & V{<

U(A, _V |V c) (6.4)

The last sum is well-defined whenever | # 0U . For the potential U
constructed in Section 3 we show in this subsection that the expectation of
the (interaction) energy density exists and equals eU

+ for a certain class of
measures and boundary conditions.

In what follows we use T to denote the set of translation invariant
probability measures on 0. The symbols C, K, c, * will always be constants
whose values can vary from place to place. We still need the following
definitions (cf. Section 5):
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1. For i # Z, 1�:<9�8, _ # 0, put

l :, +
i (_) :=min {n # N : \k�n

1
k

:
k&1

j=0

_i+ j�:
8
9= (6.5)

and

l :, &
i (_) :=min {n # N : \k�n

1
k

:
k&1

j=0

_i& j�:
8
9= (6.6)

One must identify l 1, +�&
i (_) with the (abstract) li (_) introduced before

(cf. Proposition 4.1 and the second remark after Proposition 3.1.)

2. Let M: denote the set of probability measures + # T for which
+[l :, +�&

0 (')>n]�e&cn, n # N, for some c>0, and

M := .
:>1

M: (6.7)

Notice that for + # M, eU
+ of (6.2) is well-defined.

3. Finally we put,

0: :=[| # 0 _=>0, _N # N : \i # Z with |i |�N, l :, +�&
i (|)�|i | 1�(3+=)]

(6.8)

Note that + # M: O +(0:)=1. Also if :<; then 0:#0; and \:>1,
0:#0U . The class of measures M has to be thought of as the analogue
of the class of tempered measures in the context of unbounded spin systems
(cf. ref. 24, Definition 4.1).

Proposition 6.1 (Energy density for free boundary conditions). Let
+ # M and U the potential defined in (3.13). Then,

eU
+ = lim

V A Z

1
|V |

+(H f
V) (6.9)

Proposition 6.2 (Energy density for fixed boundary condition). Let
+ # M: and | # 0: for some :>1. Then,

eU
+ = lim

V A Z

1
|V |

+(H |
V) (6.10)
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Proof of Proposition 6.1. Consider a sequence of intervals Vn=
[&n,..., n]. Then by translation invariance of +

lim
V A Z } _

1
|V |

+(H f
V)&eU

+ & }
= lim

n � �

1
2n+1 } + _ :

A/Vn

U(A, _)& :
i # Vn

:
A % i

1
|A|

U(A, _)& }
� lim

n � �

1
2n+1 } + _ :

A & Vn{<, A & V c
n{<

U(A, _)& } (6.11)

From Section 3 we know that

v U(A, _)=0 if A is not an interval

v we have the upperbounds

|U([i, j], _)|�C .I[l+
i (_)� j&i]+C$e&*( j&i) (6.12)

|U([i, j], _)|�C .I[l&
j (_)� j&i]+C$e&*( j&i) (6.13)

(cf. Proposition 5.1).
Inserting the exponential term of the RHS of (6.12) in the right hand

side of (6.11) gives

lim
n � �

C$
2n+1 \ :

n

i=&�

:
�

j=n+1

+ :
&n&1

i=&�

:
n

j=&n+ e&*( j&i)=0 (6.14)

and we are left with two sums, of which we treat only the first one, the
second one can be done in an analogous way. We abbreviate in what
follows li :=l+

i and l :
i :=l :, +

i .

lim
n � �

C
2n+1

+ \ :
n

i=&�

:
�

j=n+1

I[l i (_)� j&i]+
= lim

n � �

C
2n+1

:
n

i=&�

+([li (_)&(n&i)] .I[li (_)�n+1&i])

= lim
n � �

C
2n+1

:
n

i=&�

:
�

M=1

M+(l i (_)=M+n&i)

� lim
n � �

C
2n+1

:
n

i=&�

:
�

M=1

Me&(M+n&i) c=0 (6.15)
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Proof of Proposition 6.2.

lim
V A Z _

1
|V |

+(H |
V)&eU

+ &
= lim

V A Z

1
|V |

+ \ :
A & V{<, A & V c{<

[U(A, _V |V c)&U(A, _)]+ (6.16)

The second term goes to zero as V A Z by the proof of Proposition 6.1.
Again we take intervals Vn=[&n,..., n] and we use the bound (6.12). The
contribution of the exponential part goes to zero so we only have to show
that

lim
n � �

1
2n+1

+n \ :
n

i=&�

[li (_Vn
|V c

n
)&(n&i)] .I[l i (_Vn

|V c
n
)>n&i]+=0

(6.17)

Abbreviate _| :=_Vn
|V c

n
and f (n) :=n1�(3+=). Fix | # 0: , + # M: and n>0

large enough such that ln(|)� f (n). We distinguish two cases.

Case 1. l :
i (_)�(n&i): Here we first show that the set [_ # 0 :

li (_|)>(n&i), l :
i (_)�(n&i)] is not empty for only a limited number of

i 's (for n and : fixed). Indeed, since l :
i (_)�(n&i) we have

:
n

k=i

_(k)�: 8
9 (n&i+1) (6.18)

and thus li (_|)>(n&i) can only happen if there is a p>1 such that

: 8
9 (n&i+1)+ :

n+ p

k=n+1

|(k)< 8
9 (n&i+1+ p) (6.19)

Therefore such a p cannot be too small:

: 8
9 (n&i+1)& p< 8

9 (n&i+1+ p) (6.20)

i.e., p>K(n&i+1) where K=8(:&1)�17>0. On the other hand since
| # 0: , p� f (n+1) would imply

:
n+ p

k=n+1

|(k)>: 8
9 p (6.21)
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therefore (6.19) can only be satisfied if p< f (n+1). Combining the two
inequalities we obtained for p we get

(n&i+1)<K&1f (n+1) (6.22)

and for l :
i (_)�(n&i) and | # 0: ,

li (_|)�(n&i+1)+ f (n+1) (6.23)

We can thus estimate

:
n

i=&�

+n[[li (_|)&(n&i)] I[li (_|)>(n&i)] | l :
i (_)�(n&i)]

� :
n

i=n&K&1f (n+1)+1

+n[li (_|)&(n&i) | l :
i (_)�(n&i)]

� :
n

i=n&K&1f (n+1)+1

:
f (n)

j=1

j=O(( f (n))3) (6.24)

Case 2. l :
i (_)>(n&i+1): If | # 0: , then, for p> f (n+1),

:
n+ p

j=n+1

|( j)>: 8
9 p (6.25)

Therefore

:
n

j=i

_( j)+ :
n+ p

j=n+1

|( j)� &(n&i+1)+: 8
9 p (6.26)

Hence

&(n&i+1)+: 8
9�((n&i+1)+ p) 8

9 (6.27)

implies li (_|)�p+(n&i+1). I.e., if p�K&1(n&i+1), then l i (_|)�
p+n&i+1, and thus we conclude

li (_|)�(n&i+1)(1+K&1) (6.28)

On the other hand, since + # M: ,

+(l :
i (_)>(n&i))�e&c(n&i) (6.29)
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Combining (6.28) and (6.29) we get

:
n

i=&�

+n((li (_|)&(n&i)) I[l i (_|)>(n&i)] | l :
i (_)>(n&i))

_+n(l :
i (_)>(n&i))

� :
n

i=&�

K(n&i) e&c(n&i)=O(1) (6.30)

Conditioning respectively on l :
i (_)�(n&i), l :

i (_)>(n&i), and using
(6.24) (6.29), (6.30) we arrive at

:
n

i=&�

+n[(li (_|)&(n&i)) I[li (_|)>(n&i)]]�O(( f (n))3) (6.31)

and hence (6.17) follows. K

6.1.2. Pressure

Proposition 6.3. Let U be the potential defined in (3.13). The
pressure (or free energy density)

P(U ) := lim
V A Z

1
|V |

log Z f
V (6.32)

exists, where

Z f
V# :

_ # 0V

exp _& :
A/V

U(A, _)& (6.33)

is the finite volume (V ) partition function with free boundary conditions.

Proof.

:
A/V

U(A, _)=H f
V (_)=log

#V (+ | +)
#V (_V | +)

(6.34)

Therefore

Z f
V=

1
#V (+ | +)

(6.35)
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The existence of limV (1�|V | ) log #V (+ | +) follows from standard argu-
ments for the two dimensional Ising model. Indeed,

lim
n A �

1
|Vn |

log #Vn
(+ | +)= lim

n A �

1
|Vn |

log
Z4n

Z4n _ V� n

(6.36)

Here Z4 denotes the partition function of the two dimensional Ising model
for volume 4 and +-boundary conditions outside 4, 4n=41, n _ 42, n ,
where

41, n :=[(i, j) # Z2 : |(i, j)|�n, j>0] (6.37)

42, n :=[(i, j) # Z2 : |(i, j)|�n, j<0] (6.38)

and

V� n :=[(i, 0) : i # Vn] (6.39)

The existence of the limit in (6.36) is thus standard and can be calculated
from the cluster expansion.(11) It is equal to minus the free energy density
of the two dimensional Ising model plus a surface contribution. K

Proposition 6.4. Let P(U ) be as in Proposition 6.3 and define

Z|
V :=:

_V

exp _& :
A & V{<

U(A, _V |Vc)& (6.40)

Then \:>1 \| # 0:

P(U )= lim
V A Z

1
|V |

log Z|
V (6.41)

Proof.

1
|V |

log
Z f

V

Z|
V

=
1

|V |
log +|, U

V \exp _ :
A & V{<, A & V c{<

U(A, _V|Vc)&+�0 (6.42)

where +|, U
V is the measure introduced in Section 2, (2.15). The inequality

in (6.42) follows from the fact U(A, } )�0 \A, |A|�2. This follows from
the expression (5.2) for the potential, and the positivity of correlations for
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monotonic functions. On the other hand by Jensen's inequality (take Vn=
[&n,..., n])

lim inf
n

1
2n+1

log +|, U
Vn \exp _ :

A & V{<, A & V c{<

U(A, _V |V c)&+
�lim inf

n

1
2n+1

+|, U
Vn \ :

A & V{<, A & V c{<

U(A, _V |Vc)+=0 (6.43)

as can be obtained from the proof of Proposition 6.2. K

6.2. First Part of the Variational Principle

For every finite volume V, every | # 0U , every + # T, the following
holds

SV (+ | #V (. | |))=&SV (+)++(H |
V)+log Z|

V�0 (6.44)

where SV (+) is the entropy of the measure +, defined as

SV (+) :=& :
_ # 0V

+V (_) log +V (_) (6.45)

and SV (+ | &) is the relative entropy of the measure + with respect to the
measure &, defined as

SV (+ | &) := :
_ # 0V

+V (_) log
+V (_)
&V (_)

(6.46)

if + is absolutely continuous with respect to & and SV (+ | &)=+�
otherwise (we make the convention 0 log 0=0). We still need the following
notation:

&#V ( f ) :=| d&(|) :
_V

#V (_V | |) f (_V|Vc) (6.47)

Theorem 6.1. 1. Let P(U ) be as in Proposition 6.3. Then

P(U )= sup
+ # M

[s(+)&eU
+ ] (6.48)

where s(+) :=limV (1�|V | ) SV (+) is the entropy density.
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2. Let | # 0: for some :>1 and + # M. Then

v the relative entropy density s(+ | U ) exists

s(+ | U )# lim
V A Z

1
|V |

SV (+V | #V ( } | +))= lim
V A Z

1
|V |

SV (+ | #V ( } | |)) (6.49)

v \& # M

s(+ | U )= lim
V A Z

1
|V |

SV (+V | & b #V) (6.50)

3. The supremum in (6.48) is reached for +=&+
; .

Proof. Part 1 is a consequence of SV (+ | &)�0, \+, & # T and subsec-
tion 6.1. Part 3 is a special case of 2 because &+

; # M, &+
; b #Vn

=&+
; and

s(&+
; | &+

; )=0. The first statement, (6.49) follows immediately from the
previous subsection. To prove (6.50) we need to prove that

v lim
n

1
2n+1 | d&(|) +(H |

n &H f
n)=0 (6.51)

v lim
n

1
2n+1 | d&(|) log

Z f
n

Z|
n

=0 (6.52)

To prove that the first limit is zero, we proceed as in the proof of
Proposition 6.2. Let c+ and c& be the constants appearing in the definition
of L for +, resp. &. We estimate

1
2n+1

:
n

j=&�

E+_&([lj (_, |)&(n& j+1)] .I[lj (_, |)>n& j+1])

=
1

2n+1
:
j

:
�

M=1

M+_&[lj (_, |)=M+n& j+1]

�
1

2n+1
:
j

:
�

M=1

M+_&[lj (_, |)=M+n& j+1 | l:
j (_)�n& j+1]

+
1

2n+1
:
j

:
�

M=1

M+_&[lj (_, |)

=M+n& j+1 | l:
j (_)>n& j+1].e&(n& j) c+
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�
1

2n+1
:
j

:
�

M=K&1(n& j)

Me&Mc&+
1

2n+1
:
j

e&(n& j) c+ :
K(n& j)

M=1

M

+
1

2n+1
:
j

e&(n& j) c+ :
�

M=K(n& j)+1

M.&[l:
n(|)>M]

�
1

2n+1
:
j

e&K&1(n& j) c&+
1

2n+1
:
j

O((n& j)2) e&(n& j) c+

+
1

2n+1
:
j

e&(n& j) c+ :
�

M=K(n& j)+1

Me&Mc&

� 0 when n � +� (6.53)

This implies (by the argument we used to prove the existence of P(U )) that

lim
n � �

1
2n+1 | d&(|) log

Z f
n

Z|
n

=0 K (6.54)

6.3. Second Part of the Variational Principle

The second part of the variational principle characterizes the maxi-
mizers of (6.48) as the measures consistent with 1. Note that any maxi-
mizer + of (6.48) satisfies s(+ | &+

; )=0. To conclude + # G(1 ) from s(+ | &+
; )

we need an extra technical condition:

Theorem 6.2. Suppose that + # M such that

s(+ | &+
; ) := lim

n � �

1
2n+1

S4n
(+ | &+

; )=0 (6.55)

and

lim
n � �

+ \exp _2; :
n

i=&n

(1&'(i))&+ 2n exp[&;n]=0 (6.56)

then + # G(1 ).
We will show that &+

; satisfies the hypotheses of Theorem 6.2.

Proof of the Theorem. The first part of the proof follows [12,
p. 323] (the variational principle in the regular Gibbs case). We have to
show that for all 4 # L and for every local function g

+#4(g)=+(g) (6.57)
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We show that this equality holds for 4=[0] and every local function g;
(6.57) then follows from translation invariance and the positivity of 1.

Note that for every 2 # L, S2(+ | &+
; )<�. This implies that for every

2 # L there exists a F2-measurable function f2�0 such that += f2 .& on
F2 ( f2=(d+�d&+

; )| F2
). In ref. 12 it is shown that for every =>0 and for

every interval I % 0 there exists a set 2 # L with I/2 such that

&+
; ( | f2& f2"[0] | )�= (6.58)

Fix a local function g and let I be an interval such that I % 0 and
g # FI . Given =>0 and I, fix 2 as above and define

g~ (|) := :
_0=+�&

g(_0|0c) #[0](_0 | |2"[0] +2c) (6.59)

g~ # F2"[0] . Then

|+#[0](g)&+(g)|

�+( |#[0](g)& g~ | )+|+(g~ )&&+
; ( f2"[0] g~ )|

+&+
; ( f2"[0] . | g~ &#[0] g| )+|&+

; ( f2"[0] . (#[0] g& g))|

+&g&� &+
; ( | f2"[0]& f2 | )+|&+

; ( f2 g)&+(g)| (6.60)

Since g~ # F2"[0] and g # F2 , the second and the last term on the right are
zero. The fourth term vanishes because &+

; # G(1 ) and f2"[0] # F[0]c . The
fifth term is smaller than &g&� .= because of the choice of 2. We are left
with the first and the third term. In the quasilocal case they do not cause
any trouble because there g~ � #[0] g in sup-norm as 2 � Z, i.e., for 2 large
enough, &g~ &#[0]g&�<=. This is not the case here. We put 2 :=[&n,..., n]
and write

|(#[0]g& g~ )(|)|

= } :
_0=+�&

[#[0](_0 | |0c)&#[0](_0 | |2"0+2c)] g(_0 |0c) }
�&g&� :

_0=+�&

|#[0](_0 | |0c)&#[0](_0 | |2"0+2c)| (6.61)
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We have that

#[0](_0=+ | |0c)

=
1

1+exp[�A % 0 [U(A, &0 |0c)&U(A, +0 |0c)]]
(6.62)

#[0](_0=+ | |2+2c)

=
1

1+exp[�A % 0 [U(A, &0 |2"0+2c)&U(A, +0|2"0+2c)]]
(6.63)

and an analogous expression for _0=&.
Use the inequality

} 1
1+ex&

1
1+e y }�|x& y| (6.64)

to obtain for the first term in (6.60)

+( |#[0] g& g~ | )

�2 &g&� | d+(|) _} :
A % 0

[U(A, +0|0c)&U(A, +0|2"0+2c)] }
+ } :

A % 0

[U(A, &0|0c)&U(A, &0|2"0+2c)] }&
=2 &g&� | d+(|) _} :

A % 0, A & 2c{<

U(A, +0|0c) }
+ } :

A % 0, A & 2c{<

U(A, &0 |0c) }& (6.65)

where in the second line we used that U(A, |2+2c)=0 whenever
A & 2c{<. This expression goes to zero when n tends to infinity for every
+ # M (cf. the proof of Theorem 6.1).

For the third term in (6.60) it suffices to show that

lim sup
n

| d&+
; (|)

+(|2"0)
&+

; (|2"0) _} :
A % 0, A & 2c{<

U(A, +0|0c) }
+ } :

A % 0, A & 2c{<

U(A, &0|0c) }&=0 (6.66)
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Using that U(A, } )#0 if A is not an interval together with the bound
(3.23)

|U([ j, k], |)|�C1I[l+
j (|)>k& j]+C2I[l+

j (|)�k& j] e&*(k& j) (6.67)

we obtain

:
A % 0, A & 2c{<

|U(A, _0|0c)|

�\ :
&n&1

j=&�

:
+�

k=0

+ :
0

j=&n

:
+�

k=n+1
+ C1I[l+

j (_0|0c)>k& j]

+C2I[l+
j (_0 |0c)�k& j] e&(k& j) * (6.68)

For the exponential part we are back in the quasilocal case, namely the
sum goes to zero as n tends to infinity, uniformly in |. We continue with
_0=+ and the first sum, i.e., j< &n, k�0. The other sum and _0=& can
be treated in exactly the same way.

:
&n&1

j=&�

:
+�

k=0

I[l+
j (+0 |0c)>k& j] (6.69)

= :
&n&1

j=&�

(l+
j (+0|0c)&| j | ) I[l+

j (+0|0c)>| j |]

=: u~ n(|) (6.70)

Note that u~ n( } ) is monotone non-increasing (cf. (6.5)).
Denote by \; the Bernoulli measure on 0 with \;(_0=&)=e&8;.

Then &+
; �\ (see ref. 19). Returning to (6.66) we can write, using

Cauchy�Schwartz

| d&+
; (_)

+(_2"0)
&+

; (_2"0)
u~ n(_)

= :
_2"0

&+
; (_2"0)

+(_2"0)
&+

; (_2"0)
\(_2"0)
\(_2"0)

E&;
+(u~ n | F2"0)(_2"0)

�_ :
_2"0

\(_2"0) \+(_2"0)
\(_2"0)+

2

&
1�2

_ :
_2"0

\(_2"0)(E&;
+(u~ n | F2"0)(_2"0))2&

1�2

(6.72)
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Now

\(_2"0)= `
n

i=&n, i{0

(1&e&8;)(1+_(i))�2 (e&8;) (1&_(i))�2 (6.73)

�(1&e&8;)2n e&4; � n
i=&n, i{0 (1&_(i)) (6.74)

or

1
\(_2"0)

�4ne4; � n
i=&n, i{0 (1&_(i)) (6.75)

for ; large. Therefore

_ :
_2"0

+(_2"0)2

\(_2"0) &
1�2

�\ :
_2"0

[2ne2; � n
i=&n, i{0 (1&_(i)) +(_2"0)]2+

1�2

�2n+(e2; �n
i= &n (1&_(i))) (6.76)

On the other hand \�&+
; implies that \4 # L

:
_4

\(_4) E&;
+( f | F4)(_4)�:

_4

&+
; (_4) E&;

+( f | F4)(_4)=E&;
+( f ) (6.77)

for every non-decreasing monotone function f. Or, since &u~ 2
n is monotone

non-decreasing

:
_2"0

\(_2"0)[E&;
+(u~ n | F2"0)(_2"0)]2

� :
_2"0

\(_2"0)[E&;
+(u~ 2

n | F2"0)(_2"0)]

� :
_2"0

&+
; (_2"0)[E&;

+(u~ 2
n | F2"0)(_2"0)]

=| d&+
; (_) u~ 2

n(_) (6.78)

Putting the pieces together we obtain for the third term in (6.60)

&+
; ( f2"0 . | g~ &#4 g| )�C2n+(e2; � n

i=&n (1&_(i)))[&+
; (u~ 2

n)]1�2 (6.79)
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Lemma 6.1.

[&+
; (u~ 2

n)]1�2�Ce&;n (6.80)

The proof of Lemma 6.1 is straightforward and uses only that
&+

; [l+
j (|)>n]�Ce&;n.
Lemma 6.1 together with (6.79) prove the Theorem. K

The following Lemma states that for +=&+
; and ; large enough the

conditions of the Theorem are fulfilled (as it should be) and a fortiori that
the class of + 's for which (6.56) holds is not empty.

Lemma 6.2. For ; large,

lim
n � �

e&;n&+
; (e2; � n

i=&n (1&_(i)))=0 (6.81)

Proof. Note that

e&;n&+
; (e2; � n

i=&n (1&_(i)))�e&(;�3) n&+
; (e(11�6) ; �n

i=&n (1&_(i))) (6.82)

Obviously, &+
; ( f )=lim4 ++

;, 4( f ) and we can represent ++
;, 4(ec; �n

i= &n (1&_(i)))
for 4 large, in terms of a contour representation. In particular, using the
cluster expansion we will prove that for 0<c<2 and ;>(;0 �(2&c)) (for
some large ;0), lim supn(1�n) log &+

; (ec; �n
i=&n (1&_(i))) is uniformly bounded.

We adopt the notation of ref. 37 and refer to Sections V.7 and V.8 therein
for details. Let 10=10(4) denote the set of all Ising contours (i.e.,
contours on the dual lattice) corresponding to configurations in volume 4.
The dependence on 4 will be understood and not explicitly kept as all
arguments will turn out to be uniform in the box 4. Using a contourrepre-
sentation for the partition function, we can write

&+
; (ec; � (1&_(i)))�lim

4

�1 > # # 1 e&2; |#|e2c; |int # & [&n, n]|

�1 ># # 1 e&2; |#| (6.83)

where the sums run over all families of mutually disjoint contours
(1=[#1 ,..., #k : #i # 10 and #i & #j=<, \i, j=1,..., k]), int # denotes the set
of sites in the interior of # and we have used that |int # & [&n,..., n]|� 1

2 |#|.
We will now take the logarithm of the sums appearing in the RHS of

(6.83). The cluster expansion enables us to write this logarithm again as a
sum but now over connected families of contours where every contour can
appear more than once. We therefore change the notation (still following
ref. 37) and go over from sets of contours (1 ) to multi-indices A.
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We call a map A: 10 � N a multi-index. A(#) has to be interpreted as
the number of times that the contour # appears. Next we define (for
0�r<2)

zr(#) :=e&(2&r) ; |#| if # & [&n, n]{<

:=e&2; |#| otherwise (6.84)

zA
r := `

# # 10

zr(#)A(#) (6.85)

then

log :
1

`
# # 1

z |#|
r =:

A

aT (A) zA
r (6.86)

for suitable coefficients aT (A) (see [37, p. 466] for their exact expression).
Using (6.86) and (6.83) we obtain

log &+
; (ec; � (1&_(i)))�lim

4
:
A

aT (A)[zA
c &zA

0 ] (6.87)

and the multi-indices in the sum must give non-zero weight to at least one
contour that intersects [&n, n] otherwise the expression in the square
brackets is zero. Using translation invariance, taking the limit 4 A Z2, divid-
ing by 2n+1 and taking the limit n � � we get

lim sup
n � �

1
2n+1

log &+
; (ec; � n

i=&n (1&_(i)))

�2 max \} :
A % 0

aT (A) zA
c } , } :

A % 0

aT(A) zA
0 }+ (6.88)

The right hand side of (6.88) is of order e&(2&c ) ; for c<2 and
;>(;0 �(2&c)). In other words, for ; sufficiently large we have that

&+
; (e(11�6) ; � n

i= &n (1&_(i)))=O(ene&(1�6) ;
) (6.89)

and hence

lim
n � �

e&(1�3) ;n&+
; (e(11�6) ; �n

i=&n (1&_(i)))=0 K (6.90)

104 Maes et al.



6.4. Open Problem

It follows from [36, Section 4.5.2] that

s(&&
; | &+

; )>0 (6.91)

provided that this relative entropy exists. This implies that the following
two assertions cannot be true together:

v both phases &+
; and &&

; are consistent with 1
v

0=s(&+
; | U )=lim

V

1
|V |

SV (&+
; | &&

; b #V) (6.92)

If the first assertion is false, then &+
; and &&

; are not almost Gibbsian (i.e.,
the set of continuity points of 1 has &+

; and &&
; measure zero, see ref. 10).

It is however believed (though not proved) that &+
; and &&

; are actually
almost Gibbsian. In that case the second assertion must be false and the
limit limV(1�|V | ) SV (&+

; | #V ( } | |)) is not the same for all boundary condi-
tions |.
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